Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.680
Filtrar
1.
Adipocyte ; 13(1): 2339418, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38706095

RESUMO

A Disintegrin And Metalloproteinase domain-containing protein 10 (ADAM10), is involved in several metabolic and inflammatory pathways. We speculated that ADAM10 plays a modulatory role in adipose tissue inflammation and metabolism. To this end, we studied adipose tissue-specific ADAM10 knock-out mice (aKO). While young, regular chow diet-fed aKO mice showed increased insulin sensitivity, following prolonged (33 weeks) high-fat diet (HFD) exposure, aKO mice developed obesity and insulin resistance. Compared to controls, aKO mice showed less inflammatory adipokine profile despite the significant increase in adiposity. In brown adipose tissue, aKO mice on HFD had changes in CD8+ T cell populations indicating a lesser inflammatory pattern. Following HFD, both aKO and control littermates demonstrated decreased adipose tissue pro-inflammatory macrophages, and increased anti-inflammatory accumulation, without differences between the genotypes. Collectively, our observations indicate that selective deletion of ADAM10 in adipocytes results in a mitigated inflammatory response, leading to increased insulin sensitivity in young mice fed with regular diet. This state of insulin sensitivity, following prolonged HFD, facilitates energy storage resulting in increased fat accumulation which ultimately leads to the development of a phenotype of obesity and insulin resistance. In conclusion, the data indicate that ADAM10 has a modulatory effect of inflammation and whole-body energy metabolism.


Assuntos
Proteína ADAM10 , Tecido Adiposo , Dieta Hiperlipídica , Camundongos Knockout , Animais , Masculino , Camundongos , Proteína ADAM10/metabolismo , Proteína ADAM10/genética , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Dieta Hiperlipídica/efeitos adversos , Inflamação/metabolismo , Resistência à Insulina , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Obesidade/metabolismo , Obesidade/etiologia , Fenótipo
2.
Physiol Res ; 73(2): 273-284, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38710057

RESUMO

Lifestyle intervention encompassing nutrition and physical activity are effective strategies to prevent progressive lipid deposition in the liver. This study aimed to explore the effect of dietary change, and/or high-intensity interval training (HIIT) on hepatic lipid accumulation in high fat diet (HFD)-induced obese rats. We divided lean rats into lean control (LC) or HIIT groups (LH), and obese rats into obese normal chow diet (ND) control (ONC) or HIIT groups (ONH) and obese HFD control (OHC) or HIIT groups (OHH). We found that dietary or HIIT intervention significantly decreased body weight and the risk of dyslipidemia, prevented hepatic lipid accumulation. HIIT significantly improved mitochondrial fatty acid oxidation through upregulating mitochondrial enzyme activities, mitochondrial function and AMPK/PPARalpha/CPT1alpha pathway, as well as inhibiting hepatic de novo lipogenesis in obese HFD rats. These findings indicate that dietary alone or HIIT intervention powerfully improve intrahepatic storage of fat in diet induced obese rats. Keywords: Obesity, Exercise, Diet, Mitochondrial function, Lipid deposition.


Assuntos
Dieta Hiperlipídica , Treinamento Intervalado de Alta Intensidade , Metabolismo dos Lipídeos , Fígado , Obesidade , Ratos Sprague-Dawley , Animais , Obesidade/metabolismo , Obesidade/terapia , Masculino , Dieta Hiperlipídica/efeitos adversos , Ratos , Fígado/metabolismo , Condicionamento Físico Animal/fisiologia
3.
PLoS One ; 19(5): e0303060, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38723008

RESUMO

In the current study we investigated the impact of combination of rutin and vitamin A on glycated products, the glyoxalase system, oxidative markers, and inflammation in animals fed a high-fat high-fructose (HFFD) diet. Thirty rats were randomly divided into six groups (n = 5). The treatments, metformin (120 mg/kg), rutin (100 mg/kg), vitamin A (43 IU/kg), and a combination of rutin (100 mg/kg) and vitamin A (43 IU/kg) were given to relevant groups of rats along with high-fructose high-fat diet for 42 days. HbA1c, D-lactate, Glyoxylase-1, Hexokinase 2, malondialdehyde (MDA), glutathione peroxidase (GPx), catalase (CAT), nuclear transcription factor-B (NF-κB), interleukin-6 (IL-6), interleukin-8 (IL-8) and histological examinations were performed after 42 days. The docking simulations were conducted using Auto Dock package. The combined effects of rutin and vitamin A in treated rats significantly (p < 0.001) reduced HbA1c, hexokinase 2, and D-lactate levels while preventing cellular damage. The combination dramatically (p < 0.001) decreased MDA, CAT, and GPx in treated rats and decreased the expression of inflammatory cytokines such as IL-6 andIL-8, as well as the transcription factor NF-κB. The molecular docking investigations revealed that rutin had a strong affinity for several important biomolecules, including as NF-κB, Catalase, MDA, IL-6, hexokinase 2, and GPx. The results propose beneficial impact of rutin and vitamin A as a convincing treatment strategy to treat AGE-related disorders, such as diabetes, autism, alzheimer's, atherosclerosis.


Assuntos
Dieta Hiperlipídica , Frutose , Hiperglicemia , Inflamação , Estresse Oxidativo , Rutina , Vitamina A , Animais , Rutina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Frutose/efeitos adversos , Ratos , Dieta Hiperlipídica/efeitos adversos , Vitamina A/farmacologia , Vitamina A/metabolismo , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Inflamação/patologia , Masculino , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Hiperglicemia/induzido quimicamente , Simulação de Acoplamento Molecular , Ratos Wistar , Modelos Animais de Doenças , Glicosilação/efeitos dos fármacos , Metformina/farmacologia , Hemoglobinas Glicadas/metabolismo , NF-kappa B/metabolismo , Hexoquinase/metabolismo , Catalase/metabolismo
4.
Cells ; 13(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38727268

RESUMO

Treatment strategies for steatohepatitis are of special interest given the high prevalence of obesity and fatty liver disease worldwide. This study aimed to investigate the potential therapeutic mechanism of L-carnitine (LC) and Ginkgo biloba leaf extract (GB) supplementation in ameliorating the adverse effects of hyperlipidemia and hepatosteatosis induced by a high-cholesterol diet (HCD) in an animal model. The study involved 50 rats divided into five groups, including a control group, a group receiving only an HCD, and three groups receiving an HCD along with either LC (300 mg LC/kg bw), GB (100 mg GB/kg bw), or both. After eight weeks, various parameters related to lipid and glucose metabolism, antioxidant capacity, histopathology, immune reactivity, and liver ultrastructure were measured. LC + GB supplementation reduced serum total cholesterol, triglyceride, low-density lipoprotein cholesterol, glucose, insulin, HOMA-IR, alanine transaminase, and aspartate transaminase levels and increased high-density lipoprotein cholesterol levels compared with those in the HCD group. Additionally, treatment with both supplements improved antioxidant ability and reduced lipid peroxidation. The histological examination confirmed that the combination therapy reduced liver steatosis and fibrosis while also improving the appearance of cell organelles in the ultrastructural hepatocytes. Finally, the immunohistochemical analysis indicated that cotreatment with LC + GB upregulated the immune expression of GLP-1 and ß-Cat in liver sections that were similar to those of the control animals. Mono-treatment with LC or GB alone substantially but not completely protected the liver tissue, while the combined use of LC and GB may be more effective in treating liver damage caused by high cholesterol than either supplement alone by regulating hepatic oxidative stress and the protein expression of GLP-1 and ß-Cat.


Assuntos
Carnitina , Suplementos Nutricionais , Dislipidemias , Ginkgo biloba , Fígado , Extratos Vegetais , Animais , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Carnitina/farmacologia , Masculino , Ratos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Dislipidemias/tratamento farmacológico , Dislipidemias/metabolismo , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/patologia , Fígado Gorduroso/metabolismo , Ratos Sprague-Dawley , Metabolismo dos Lipídeos/efeitos dos fármacos , Antioxidantes/farmacologia , Dieta Hiperlipídica/efeitos adversos , Extrato de Ginkgo
5.
Respir Res ; 25(1): 205, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730297

RESUMO

BACKGROUND: Obesity is the main risk factor leading to the development of various respiratory diseases, such as asthma and pulmonary hypertension. Pulmonary microvascular endothelial cells (PMVECs) play a significant role in the development of lung diseases. Aconitate decarboxylase 1 (Acod1) mediates the production of itaconate, and Acod1/itaconate axis has been reported to play a protective role in multiple diseases. However, the roles of Acod1/itaconate axis in the PMVECs of obese mice are still unclear. METHODS: mRNA-seq was performed to identify the differentially expressed genes (DEGs) between high-fat diet (HFD)-induced PMVECs and chow-fed PMVECs in mice (|log2 fold change| ≥ 1, p ≤ 0.05). Free fatty acid (FFA) was used to induce cell injury, inflammation and mitochondrial oxidative stress in mouse PMVECs after transfection with the Acod1 overexpressed plasmid or 4-Octyl Itaconate (4-OI) administration. In addition, we investigated whether the nuclear factor erythroid 2-like 2 (Nrf2) pathway was involved in the effects of Acod1/itaconate in FFA-induced PMVECs. RESULTS: Down-regulated Acod1 was identified in HFD mouse PMVECs by mRNA-seq. Acod1 expression was also reduced in FFA-treated PMVECs. Acod1 overexpression inhibited cell injury, inflammation and mitochondrial oxidative stress induced by FFA in mouse PMVECs. 4-OI administration showed the consistent results in FFA-treated mouse PMVECs. Moreover, silencing Nrf2 reversed the effects of Acod1 overexpression and 4-OI administration in FFA-treated PMVECs, indicating that Nrf2 activation was required for the protective effects of Acod1/itaconate. CONCLUSION: Our results demonstrated that Acod1/Itaconate axis might protect mouse PMVECs from FFA-induced injury, inflammation and mitochondrial oxidative stress via activating Nrf2 pathway. It was meaningful for the treatment of obesity-caused pulmonary microvascular endotheliopathy.


Assuntos
Carboxiliases , Células Endoteliais , Pulmão , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2 , Obesidade , Succinatos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Camundongos , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Carboxiliases/metabolismo , Carboxiliases/genética , Obesidade/metabolismo , Obesidade/complicações , Masculino , Succinatos/farmacologia , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/irrigação sanguínea , Células Cultivadas , Microvasos/metabolismo , Microvasos/efeitos dos fármacos , Microvasos/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Dieta Hiperlipídica/efeitos adversos , Endotélio Vascular/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Hidroliases
6.
Front Endocrinol (Lausanne) ; 15: 1387964, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38742193

RESUMO

The high prevalence of obesity has become a pressing global public health problem and there exists a strong association between increased BMI and mortality at a BMI of 25 kg/m2 or higher. The prevalence of obesity is higher among middle-aged adults than among younger groups and the combination of aging and obesity exacerbate systemic inflammation. Increased inflammatory cytokines such as interleukin 6 and tumor necrosis factor alpha (TNFα) are hallmarks of obesity, and promote the secretion of hepatic C-reactive protein (CRP) which further induces systematic inflammation. The neuropeptide oxytocin has been shown to have anti-obesity and anti-inflammation effects, and also suppress sweet-tasting carbohydrate consumption in mammals. Previously, we have shown that the Japanese herbal medicine Kamikihito (KKT), which is used to treat neuropsychological stress disorders in Japan, functions as an oxytocin receptors agonist. In the present study, we further investigated the effect of KKT on body weight (BW), food intake, inflammation, and sweet preferences in middle-aged obese mice. KKT oral administration for 12 days decreased the expression of pro-inflammatory cytokines in the liver, and the plasma CRP and TNFα levels in obese mice. The effect of KKT administration was found to be different between male and female mice. In the absence of sucrose, KKT administration decreased food intake only in male mice. However, while having access to a 30% sucrose solution, both BW and food intake was decreased by KKT administration in male and female mice; but sucrose intake was decreased in female mice alone. In addition, KKT administration decreased sucrose intake in oxytocin deficient lean mice, but not in the WT lean mice. The present study demonstrates that KKT ameliorates chronic inflammation, which is strongly associated with aging and obesity, and decreases food intake in male mice as well as sucrose intake in female mice; in an oxytocin receptor dependent manner.


Assuntos
Dieta Hiperlipídica , Medicamentos de Ervas Chinesas , Inflamação , Camundongos Endogâmicos C57BL , Obesidade , Animais , Obesidade/metabolismo , Obesidade/tratamento farmacológico , Masculino , Camundongos , Dieta Hiperlipídica/efeitos adversos , Inflamação/metabolismo , Feminino , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Sacarose/administração & dosagem , Preferências Alimentares/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Ocitocina/farmacologia , Medicina Kampo , População do Leste Asiático
7.
Mol Biol Rep ; 51(1): 613, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704764

RESUMO

BACKGROUND: The non-alcoholic fatty liver disease (NAFLD) is prevalent in as many as 25% of adults who are afflicted with metabolic syndrome. Oxidative stress plays a significant role in the pathophysiology of hepatic and renal injury associated with NAFLD. Therefore, probiotics such as Lactobacillus casei (LBC) and the microalga Chlorella vulgaris (CV) may be beneficial in alleviating kidney injury related to NAFLD. MATERIALS AND METHODS: This animal study utilized 30 C57BL/6 mice, which were evenly distributed into five groups: the control group, the NAFLD group, the NAFLD + CV group, the NAFLD + LBC group, and the NAFLD + CV + LBC group. A high-fat diet (HFD) was administered to induce NAFLD for six weeks. The treatments with CV and LBC were continued for an additional 35 days. Biochemical parameters, total antioxidant capacity (TAC), and the expression of kidney damage marker genes (KIM 1 and NGAL) in serum and kidney tissue were determined, respectively. A stereological analysis was conducted to observe the structural changes in kidney tissues. RESULTS: A liver histopathological examination confirmed the successful induction of NAFLD. Biochemical investigations revealed that the NAFLD group exhibited increased ALT and AST levels, significantly reduced in the therapy groups (p < 0.001). The gene expression levels of KIM-1 and NGAL were elevated in NAFLD but were significantly reduced by CV and LBC therapies (p < 0.001). Stereological examinations revealed reduced kidney size, volume, and tissue composition in the NAFLD group, with significant improvements observed in the treated groups (p < 0.001). CONCLUSION: This study highlights the potential therapeutic efficacy of C. vulgaris and L. casei in mitigating kidney damage caused by NAFLD. These findings provide valuable insights for developing novel treatment approaches for managing NAFLD and its associated complications.


Assuntos
Chlorella vulgaris , Dieta Hiperlipídica , Rim , Lacticaseibacillus casei , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Probióticos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/terapia , Hepatopatia Gordurosa não Alcoólica/patologia , Animais , Dieta Hiperlipídica/efeitos adversos , Camundongos , Rim/patologia , Rim/metabolismo , Probióticos/farmacologia , Probióticos/administração & dosagem , Masculino , Estresse Oxidativo/efeitos dos fármacos , Modelos Animais de Doenças , Fígado/patologia , Fígado/metabolismo , Nefropatias/etiologia , Nefropatias/patologia , Nefropatias/terapia , Antioxidantes/metabolismo
8.
Clin Exp Pharmacol Physiol ; 51(6): e13869, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38725222

RESUMO

Treatment with erythropoietin (EPO) can correct anaemia in chronic kidney disease (CKD) patients; however, up to 10% exhibit resistance or hyporesponsiveness to EPO. Non-alcoholic fatty liver disease (NAFLD), prevalent liver disease in CKD patients, may limit EPO response because of thrombopoietin deficiency, iron homeostasis disorder and inflammation. Therefore, we hypothesized NAFLD is a risk factor for EPO responsiveness. To test our hypothesis, we evaluated the effect of EPO in healthy rats and rats with NAFLD induced by a high-fat, high-carbohydrate (HFHC) diet. After 12 weeks on the HFHC diet, NAFLD rats showed lower erythroid response to EPO treatment than healthy rats. We, then, determined that the primary cause of EPO hyporesponsiveness could be iron deficiency associated with inflammation, which reduces erythroid cell production. Specifically, the concentrations of hepcidin, ferritin, transferrin and white blood cells in NAFLD rats were 12.8-, 16.4-, 2.51- and 1.40-fold higher than those in healthy rats, respectively. However, erythroid cell types in the bone marrow of NAFLD rats were significantly reduced. In conclusion, our data suggest that NAFLD could be a risk factor for EPO responsiveness, which is attributed to functional iron deficiency associated with inflammation.


Assuntos
Eritropoetina , Hepatopatia Gordurosa não Alcoólica , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/patologia , Ratos , Masculino , Ratos Sprague-Dawley , Dieta Hiperlipídica/efeitos adversos , Hepcidinas/metabolismo
9.
BMJ Open Diabetes Res Care ; 12(3)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38719505

RESUMO

INTRODUCTION: There has been increasing evidence that the gut microbiota is closely related to type 2 diabetes (T2D). Metformin (Met) is often used in combination with saxagliptin (Sax) and repaglinide (Rep) for the treatment of T2D. However, little is known about the effects of these combination agents on gut microbiota in T2D. RESEARCH DESIGN AND METHODS: A T2D mouse model induced by a high-fat diet (HFD) and streptozotocin (STZ) was employed. The T2D mice were randomly divided into six groups, including sham, Met, Sax, Rep, Met+Sax and Met+Rep, for 4 weeks. Fasting blood glucose level, serum biochemical index, H&E staining of liver, Oil red O staining of liver and microbiota analysis by 16s sequencing were used to access the microbiota in the fecal samples. RESULTS: These antidiabetics effectively prevented the development of HFD/STZ-induced high blood glucose, and the combination treatment had a better effect in inhibiting lipid accumulation. All these dosing regimens restored the decreasing ratio of the phylum Bacteroidetes: Firmicutes, and increasing abundance of phylum Desulfobacterota, expect for Met. At the genus level, the antidiabetics restored the decreasing abundance of Muribaculaceae in T2D mice, but when Met was combined with Rep or Sax, the abundance of Muribaculaceae was decreased. The combined treatment could restore the reduced abundance of Prevotellaceae_UCG-001, while Met monotherapy had no such effect. In addition, the reduced Lachnospiraceae_NK4A136_group was well restored in the combination treatment groups, and the effect was much greater than that in the corresponding monotherapy group. Therefore, these dosing regimens exerted different effects on the composition of gut microbiota, which might be associated with the effect on T2D. CONCLUSIONS: Supplementation with specific probiotics may further improve the hypoglycemic effects of antidiabetics and be helpful for the development of new therapeutic drugs for T2D.


Assuntos
Adamantano , Glicemia , Carbamatos , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Dieta Hiperlipídica , Dipeptídeos , Microbioma Gastrointestinal , Hipoglicemiantes , Metformina , Piperidinas , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Metformina/farmacologia , Metformina/uso terapêutico , Camundongos , Dieta Hiperlipídica/efeitos adversos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/microbiologia , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Carbamatos/farmacologia , Dipeptídeos/farmacologia , Masculino , Adamantano/análogos & derivados , Adamantano/farmacologia , Adamantano/uso terapêutico , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Glicemia/análise , Glicemia/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Quimioterapia Combinada , Estreptozocina
10.
Front Endocrinol (Lausanne) ; 15: 1388361, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745946

RESUMO

Introduction: The pathogenesis of Post-Transplant Diabetes Mellitus (PTDM) is complex and multifactorial and it resembles that of Type-2 Diabetes Mellitus (T2DM). One risk factor specific to PTDM differentiates both entities: the use of immunosuppressive therapy. Specifically, Tacrolimus interacts with obesity and insulin resistance (IR) in accelerating the onset of PTDM. In a genotypic model of IR, the obese Zucker rats, Tacrolimus is highly diabetogenic by promoting the same changes in beta-cell already modified by IR. Nevertheless, genotypic animal models have their limitations and may not resemble the real pathophysiology of diabetes. In this study, we have evaluated the interaction between beta-cell damage and Tacrolimus in a non-genotypic animal model of obesity and metabolic syndrome. Methods: Sprague Dawley rats were fed a high-fat enriched diet during 45 days to induce obesity and metabolic dysregulation. On top of this established obesity, the administration of Tacrolimus (1mg/kg/day) during 15 days induced severe hyperglycaemia and changes in morphological and structural characteristics of the pancreas. Results: Obese animals administered with Tacrolimus showed increased size of islets of Langerhans and reduced beta-cell proliferation without changes in apoptosis. There were also changes in beta-cell nuclear factors such as a decrease in nuclear expression of MafA and a nuclear overexpression of FoxO1A, PDX-1 and NeuroD1. These animals also showed increased levels of pancreatic insulin and glucagon. Discussion: This model could be evidence of the relationship between the T2DM and PTDM physiopathology and, eventually, the model may be instrumental to study the pathogenesis of T2DM.


Assuntos
Modelos Animais de Doenças , Síndrome Metabólica , Obesidade , Ratos Sprague-Dawley , Tacrolimo , Animais , Tacrolimo/farmacologia , Síndrome Metabólica/metabolismo , Síndrome Metabólica/patologia , Síndrome Metabólica/induzido quimicamente , Obesidade/metabolismo , Obesidade/patologia , Ratos , Masculino , Imunossupressores/efeitos adversos , Imunossupressores/farmacologia , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Células Secretoras de Insulina/efeitos dos fármacos , Fenótipo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/metabolismo , Resistência à Insulina , Dieta Hiperlipídica/efeitos adversos
11.
FASEB J ; 38(10): e23669, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38747734

RESUMO

Amomum xanthioides (AX) has been used as an edible herbal medicine to treat digestive system disorders in Asia. Additionally, Lactobacillus casei is a well-known probiotic commonly used in fermentation processes as a starter. The current study aimed to investigate the potential of Lactobacillus casei-fermented Amomum xanthioides (LAX) in alleviating metabolic disorders induced by high-fat diet (HFD) in a mouse model. LAX significantly reduced the body and fat weight, outperforming AX, yet without suppressing appetite. LAX also markedly ameliorated excessive lipid accumulation and reduced inflammatory cytokine (IL-6) levels in serum superior to AX in association with UCP1 activation and adiponectin elevation. Furthermore, LAX noticeably improved the levels of fasting blood glucose, serum insulin, and HOMA-IR through positive regulation of glucose transporters (GLUT2, GLUT4), and insulin receptor gene expression. In conclusion, the fermentation of AX demonstrates a pronounced mitigation of overnutrition-induced metabolic dysfunction, including hyperlipidemia, hyperglycemia, hyperinsulinemia, and obesity, compared to non-fermented AX. Consequently, we proposed that the fermentation of AX holds promise as a potential candidate for effectively ameliorating metabolic disorders.


Assuntos
Amomum , Dieta Hiperlipídica , Fermentação , Lacticaseibacillus casei , Obesidade , Animais , Dieta Hiperlipídica/efeitos adversos , Camundongos , Obesidade/metabolismo , Masculino , Lacticaseibacillus casei/metabolismo , Amomum/química , Camundongos Endogâmicos C57BL , Probióticos/farmacologia , Proteína Desacopladora 1/metabolismo , Resistência à Insulina , Camundongos Obesos , Adiponectina/metabolismo , Insulina/metabolismo , Insulina/sangue , Glicemia/metabolismo
13.
Nat Commun ; 15(1): 4052, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744820

RESUMO

Obesity has emerged as a prominent risk factor for the development of malignant tumors. However, the existing literature on the role of adipocytes in the tumor microenvironment (TME) to elucidate the correlation between obesity and cancer remains insufficient. Here, we aim to investigate the formation of cancer-associated adipocytes (CAAs) and their contribution to tumor growth using mouse models harboring dysfunctional adipocytes. Specifically, we employ adipocyte-specific BECN1 KO (BaKO) mice, which exhibit lipodystrophy due to dysfunctional adipocytes. Our results reveal the activation of YAP/TAZ signaling in both CAAs and BECN1-deficient adipocytes, inducing adipocyte dedifferentiation and formation of a malignant TME. The additional deletion of YAP/TAZ from BaKO mice significantly restores the lipodystrophy and inflammatory phenotypes, leading to tumor regression. Furthermore, mice fed a high-fat diet (HFD) exhibit decreased BECN1 and increased YAP/TAZ expression in their adipose tissues. Treatment with the YAP/TAZ inhibitor, verteporfin, suppresses tumor progression in BaKO and HFD-fed mice, highlighting its efficacy against mice with metabolic dysregulation. Overall, our findings provide insights into the key mediators of CAA and their significance in developing a TME, thereby suggesting a viable approach targeting adipocyte homeostasis to suppress cancer growth.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Adipócitos , Dieta Hiperlipídica , Camundongos Knockout , Microambiente Tumoral , Proteínas de Sinalização YAP , Animais , Proteínas de Sinalização YAP/metabolismo , Adipócitos/metabolismo , Adipócitos/patologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Camundongos , Dieta Hiperlipídica/efeitos adversos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Obesidade/metabolismo , Obesidade/patologia , Humanos , Verteporfina/farmacologia , Transdução de Sinais , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Progressão da Doença , Masculino , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Lipodistrofia/metabolismo , Lipodistrofia/patologia , Lipodistrofia/genética , Camundongos Endogâmicos C57BL , Transativadores/metabolismo , Transativadores/genética
14.
Int J Oral Sci ; 16(1): 39, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740741

RESUMO

The aim of this study was to explore the impact of chronic apical periodontitis (CAP) on atherosclerosis in apoE-/- mice fed high-fat diet (HFD). This investigation focused on the gut microbiota, metabolites, and intestinal barrier function to uncover potential links between oral health and cardiovascular disease (CVD). In this study, CAP was shown to exacerbate atherosclerosis in HFD-fed apoE-/- mice, as evidenced by the increase in plaque size and volume in the aortic walls observed via Oil Red O staining. 16S rRNA sequencing revealed significant alterations in the gut microbiota, with harmful bacterial species thriving while beneficial species declining. Metabolomic profiling indicated disruptions in lipid metabolism and primary bile acid synthesis, leading to elevated levels of taurochenodeoxycholic acid (TCDCA), taurocholic acid (TCA), and tauroursodeoxycholic acid (TDCA). These metabolic shifts may contribute to atherosclerosis development. Furthermore, impaired intestinal barrier function, characterized by reduced mucin expression and disrupted tight junction proteins, was observed. The increased intestinal permeability observed was positively correlated with the severity of atherosclerotic lesions, highlighting the importance of the intestinal barrier in cardiovascular health. In conclusion, this research underscores the intricate interplay among oral health, gut microbiota composition, metabolite profiles, and CVD incidence. These findings emphasize the importance of maintaining good oral hygiene as a potential preventive measure against cardiovascular issues, as well as the need for further investigations into the intricate mechanisms linking oral health, gut microbiota, and metabolic pathways in CVD development.


Assuntos
Aterosclerose , Dieta Hiperlipídica , Disbiose , Microbioma Gastrointestinal , Animais , Dieta Hiperlipídica/efeitos adversos , Aterosclerose/metabolismo , Camundongos , Masculino , Periodontite Periapical/metabolismo , Periodontite Periapical/microbiologia , Apolipoproteínas E/metabolismo , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S
15.
Sci Rep ; 14(1): 10855, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740782

RESUMO

Type 2 diabetes mellitus (T2DM) is a chronic inflammatory disease that can compromise the functioning of various organs, including the salivary glands (SG). The purinergic system is one of the most important inflammatory pathways in T2DM condition, and P2X7R and P2X4R are the primary purinergic receptors in SG that regulate inflammatory homeostasis. This study aimed to evaluate P2X7R and P2X4R expression, and morphological changes in the submandibular gland (SMG) in T2DM. Twenty-four 5-week-old mice were randomly assigned to control (CON) and diabetes mellitus (DM) groups (n = 12 each). Body weight, diet, and blood glucose levels were monitored weekly. The histomorphology of the SMG and the expression of the P2X7R, and P2X7R was evaluated by immunohistochemistry (IHC) staining and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) at 11 and 13 weeks of age. Our findings indicate a significant increase in food consumption, body weight, and blood glucose levels in the DM group. Although a significant increase in P2X7R and P2X4R expression was observed in the DM groups, the receptor location remained unchanged. We also observed a significant increase in the acinar area in the DM13w group, and a significant decrease in the ductal area in the DM11w and DM13w groups. Targeting purinergic receptors may offer novel therapeutic methods for diabetic complications.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Dieta Hiperlipídica , Receptores Purinérgicos P2X4 , Receptores Purinérgicos P2X7 , Glândula Submandibular , Animais , Glândula Submandibular/metabolismo , Glândula Submandibular/patologia , Receptores Purinérgicos P2X4/metabolismo , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/genética , Dieta Hiperlipídica/efeitos adversos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Camundongos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Masculino , Glicemia/metabolismo , Peso Corporal , Estreptozocina , Camundongos Endogâmicos C57BL
16.
Front Cell Infect Microbiol ; 14: 1347716, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716198

RESUMO

High-fat diets (HFDs), a prevailing daily dietary style worldwide, induce chronic low-grade inflammation in the central nervous system and peripheral tissues, promoting a variety of diseases including pathologies associated with neuroinflammation. However, the mechanisms linking HFDs to inflammation are not entirely clear. Here, using a Drosophila HFD model, we explored the mechanism of HFD-induced inflammation in remote tissues. We found that HFDs activated the IMD/NFκB immune pathway in the head through remodeling of the commensal gut bacteria. Removal of gut microbiota abolished such HFD-induced remote inflammatory response. Further experiments revealed that HFDs significantly increased the abundance of Acetobacter malorum in the gut, and the re-association of this bacterium was sufficient to elicit inflammatory response in remote tissues. Mechanistically, Acetobacter malorum produced a greater amount of peptidoglycan (PGN), a well-defined microbial molecular pattern that enters the circulation and remotely activates an inflammatory response. Our results thus show that HFDs trigger inflammation mediated by a bacterial molecular pattern that elicits host immune response.


Assuntos
Dieta Hiperlipídica , Proteínas de Drosophila , Microbioma Gastrointestinal , Inflamação , NF-kappa B , Transdução de Sinais , Animais , Dieta Hiperlipídica/efeitos adversos , NF-kappa B/metabolismo , Inflamação/metabolismo , Proteínas de Drosophila/metabolismo , Acetobacter/metabolismo , Drosophila/microbiologia , Peptidoglicano/metabolismo , Modelos Animais de Doenças , Drosophila melanogaster/microbiologia
17.
Redox Rep ; 29(1): 2347139, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38718286

RESUMO

OBJECTIVES: The objective of this study was to investigate whether skeletal muscle cystathionine γ-lyase (CTH) contributes to high-fat diet (HFD)-induced metabolic disorders using skeletal muscle Cth knockout (CthΔskm) mice. METHODS: The CthΔskm mice and littermate Cth-floxed (Cthf/f) mice were fed with either HFD or chow diet for 13 weeks. Metabolomics and transcriptome analysis were used to assess the impact of CTH deficiency in skeletal muscle. RESULTS: Metabolomics coupled with transcriptome showed that CthΔskm mice displayed impaired energy metabolism and some signaling pathways linked to insulin resistance (IR) in skeletal muscle although the mice had normal insulin sensitivity. HFD led to reduced CTH expression and impaired energy metabolism in skeletal muscle in Cthf/f mice. CTH deficiency and HFD had some common pathways enriched in the aspects of amino acid metabolism, carbon metabolism, and fatty acid metabolism. CthΔskm+HFD mice exhibited increased body weight gain, fasting blood glucose, plasma insulin, and IR, and reduced glucose transporter 4 and CD36 expression in skeletal muscle compared to Cthf/f+HFD mice. Impaired mitochondria and irregular arrangement in myofilament occurred in CthΔskm+HFD mice. Omics analysis showed differential pathways enriched between CthΔskm mice and Cthf/f mice upon HFD. More severity in impaired energy metabolism, reduced AMPK signaling, and increased oxidative stress and ferroptosis occurred in CthΔskm+HFD mice compared to Cthf/f+HFD mice. DISCUSSION: Our results indicate that skeletal muscle CTH expression dysregulation contributes to metabolism disorders upon HFD.


Assuntos
Cistationina gama-Liase , Dieta Hiperlipídica , Hiperglicemia , Resistência à Insulina , Músculo Esquelético , Obesidade , Animais , Resistência à Insulina/fisiologia , Músculo Esquelético/metabolismo , Camundongos , Obesidade/metabolismo , Cistationina gama-Liase/metabolismo , Cistationina gama-Liase/genética , Cistationina gama-Liase/deficiência , Dieta Hiperlipídica/efeitos adversos , Hiperglicemia/metabolismo , Camundongos Knockout , Masculino , Metabolismo Energético
18.
Proc Natl Acad Sci U S A ; 121(20): e2306776121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38709933

RESUMO

A high-fat diet (HFD) is a high-risk factor for the malignant progression of cancers through the disruption of the intestinal microbiota. However, the role of the HFD-related gut microbiota in cancer development remains unclear. This study found that obesity and obesity-related gut microbiota were associated with poor prognosis and advanced clinicopathological status in female patients with breast cancer. To investigate the impact of HFD-associated gut microbiota on cancer progression, we established various models, including HFD feeding, fecal microbiota transplantation, antibiotic feeding, and bacterial gavage, in tumor-bearing mice. HFD-related microbiota promotes cancer progression by generating polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). Mechanistically, the HFD microbiota released abundant leucine, which activated the mTORC1 signaling pathway in myeloid progenitors for PMN-MDSC differentiation. Clinically, the elevated leucine level in the peripheral blood induced by the HFD microbiota was correlated with abundant tumoral PMN-MDSC infiltration and poor clinical outcomes in female patients with breast cancer. These findings revealed that the "gut-bone marrow-tumor" axis is involved in HFD-mediated cancer progression and opens a broad avenue for anticancer therapeutic strategies by targeting the aberrant metabolism of the gut microbiota.


Assuntos
Neoplasias da Mama , Diferenciação Celular , Dieta Hiperlipídica , Progressão da Doença , Microbioma Gastrointestinal , Leucina , Células Supressoras Mieloides , Animais , Dieta Hiperlipídica/efeitos adversos , Leucina/metabolismo , Feminino , Humanos , Camundongos , Células Supressoras Mieloides/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/microbiologia , Neoplasias da Mama/metabolismo , Obesidade/microbiologia , Obesidade/metabolismo , Obesidade/patologia , Linhagem Celular Tumoral
19.
JCI Insight ; 9(9)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38716728

RESUMO

The importance of the proper localization of most receptors at the cell surface is often underestimated, although this feature is essential for optimal receptor response. Endospanin 1 (Endo1) (also known as OBRGRP or LEPROT) is a protein generated from the same gene as the human leptin receptor and regulates the trafficking of proteins to the surface, including the leptin receptor. The systemic role of Endo1 on whole-body metabolism has not been studied so far. Here, we report that general Endo1-KO mice fed a high-fat diet develop metabolically healthy obesity with lipid repartitioning in organs and preferential accumulation of fat in adipose tissue, limited systematic inflammation, and better controlled glucose homeostasis. Mechanistically, Endo1 interacts with the lipid translocase CD36, thus regulating its surface abundance and lipid uptake in adipocytes. In humans, the level of Endo1 transcripts is increased in the adipose tissue of patients with obesity, but low levels rather correlate with a profile of metabolically healthy obesity. We suggest here that Endo1, most likely by controlling CD36 cell surface abundance and lipid uptake in adipocytes, dissociates obesity from diabetes and that its absence participates in metabolically healthy obesity.


Assuntos
Tecido Adiposo , Antígenos CD36 , Dieta Hiperlipídica , Camundongos Knockout , Obesidade , Animais , Feminino , Humanos , Masculino , Camundongos , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Antígenos CD36/metabolismo , Antígenos CD36/genética , Dieta Hiperlipídica/efeitos adversos , Glucose/metabolismo , Metabolismo dos Lipídeos/genética , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/genética
20.
PLoS One ; 19(5): e0300292, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38718051

RESUMO

The aim of the study was to investigate the effect of returning to a balanced diet combined with chromium picolinate (CrPic) or chromium nanoparticles (CrNPs) supplementation at a pharmacologically relevant dose of 0.3 mg/kg body weight on the expression level of selected genes and bone turnover markers in the blood and bones of rats fed an obese diet. The results of the study showed that chronic intake of a high-fat obesogenic diet negatively affects bone turnover by impairing processes of both synthesis and degradation of bones. The switch to a healthy diet proved insufficient to regulate bone metabolism disorders induced by an obesogenic diet, even when it was supplemented with chromium, irrespective of its form. Supplementation with CrPic with no change in diet stimulated bone metabolism only at the molecular level, towards increased osteoclastogenesis (bone resorption). In contrast, CrNPs added to the high-fat diet effectively regulated bone turnover by increasing both osteoblastogenesis and osteoclastogenesis, with these changes directed more towards bone formation. The results of the study suggest that unfavourable changes in bone metabolism induced by chronic intake of a high-fat diet can be mitigated by supplementation with CrNPs, whereas a change in eating habits fails to achieve a similar effect.


Assuntos
Remodelação Óssea , Cromo , Dieta Hiperlipídica , Animais , Dieta Hiperlipídica/efeitos adversos , Ratos , Cromo/administração & dosagem , Cromo/farmacologia , Masculino , Remodelação Óssea/efeitos dos fármacos , Nanopartículas/química , Fibras na Dieta/farmacologia , Ácidos Picolínicos/farmacologia , Ácidos Picolínicos/administração & dosagem , Suplementos Nutricionais , Osso e Ossos/metabolismo , Osso e Ossos/efeitos dos fármacos , Ratos Wistar , Nanopartículas Metálicas/química , Nanopartículas Metálicas/administração & dosagem , Osteogênese/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA